organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Ethoxy-*N'*-propanoylpyridine-2-carbohydrazide

Sheng-Jiao Tang, Hai-Ping Li, Xin-Yong Lin and Wen-Shi Wu*

College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China Correspondence e-mail: wws@hqu.edu.cn

Received 6 March 2010; accepted 18 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.150; data-to-parameter ratio = 18.2.

In the crystal structure of the title compound, $C_{11}H_{15}N_3O_3$, molecules are linked into a chain by intermolecular $N-H\cdots O$ hydrogen bonds.

Related literature

For the structure of *N*-propionylpicoloylhydrazide, see: Wu & Liu (2001).

Experimental

Crystal data	
C ₁₁ H ₁₅ N ₃ O ₃	a = 11.377 (5) Å
$M_r = 237.26$	b = 4.745 (2) Å
Monoclinic, $P2_1/c$	c = 23.244 (10) Å

 $\beta = 99.534 (5)^{\circ}$ $V = 1237.3 (9) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker P4 diffractometer 9032 measured reflections 2803 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.150$ S = 0.962803 reflections $1.00 \times 0.45 \times 0.10 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

2297 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

154 parameters H-atom parameters constrained $\begin{array}{l} \Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O2^{i}$	0.86	2.43	3.067 (2)	132
$N3-H3A\cdots O2^{ii}$	0.86	2.06	2.831 (2)	150

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y + 1, z.

Data collection: *XSCANS* (Bruker, 1999); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful for financial support from the National Science Foundation of Fujian Province of China (No. E0610017, 2003 F006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2133).

References

Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Wu, W. S. & Liu, S. X. (2001). Chin. J. Struct. Chem. 20, 226–228.

supplementary materials

Acta Cryst. (2010). E66, o920 [doi:10.1107/S1600536810010135]

4-Ethoxy-N'-propanoylpyridine-2-carbohydrazide

S.-J. Tang, H.-P. Li, X.-Y. Lin and W.-S. Wu

Comment

It has been reported that the structure of N-propionylpicoloylhydrazide (II, Wu *et al.*, 2001), based on which we reported the structure of 4-ethoxy-*N*-propionyl-2-pyridine formylhydrazine (I), $C_{11}H_{15}N_3O_3$. The structure of the title compound shown in Fig. 1 exhibits a stable one-dimension chain structure which is stabilized by inter-molecular hydrogen bonds of N2—H2A···O2ⁱⁱ, N3—H3A···O2ⁱⁱ. All these bonds are detailed in Fig. 2 and Table 1.

In this title compound, the torsion angle of C6—N2—N3—C7 is -77.1 (2) ° which is slightly smaller than the torsion angle of the structure (II) (-73.5 (2) ° for C6—N2—N3—C7). The distances of C6—N2, N2—N3 and C7—N3 are 1.345 (2) Å, 1.335 (2) and 1.380 (2) Å respectively. They are similar to homologous bonds of structure (II) with distances 1.334 (2) Å for C6—N2, 1.383 (2) Å for N2—N3 and 1.337 (2) Å for C7—N3. And in structure (I), it's almost coplanar for C1, C2, C3, C4, C5, N1, C6, O1, N2, N3, O3, C10 and C11, and the maximum atomic deviation being 0.0920 Å. The dihedral angle between the mean planes of the C1, C2, C3, C4, C5, N1, C6, O1, N2, N3, O3, C10 and C11 and the mean planes of the N3, C7 and O2 is 72.44 (8) °.

Experimental

4-ethoxyl-2-pyridine formylhydrazine (3.42 g, 14.41 mmol) was dissolved in a mixed solution of CHCl₃ (30 ml) and EtOH (20 ml), then filtered. Propionic anhydride (3.64 ml) was added and refluxed 2hrs with whisked. Colorless needle crystals of the title compound were obtained by slow evaporation of solvent at room temperature. Melting point: 407 - 407.5 K.

Refinement

The positions of the N2-, N3-bound H atoms were placed at fixed positions and refined accord to the riding model. The C-bound H atoms were included in the riding model approximation with C-H = 0.93 Å and U_{iso} of each H atom = $1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radius.

Fig. 2. Hydrogen bonds diagram of the title compound, showing the H-bonded interactions (dashed lines). O2I, O2II represent O2ⁱ, O2ⁱⁱ, respectively.

4-Ethoxy-N'-propanoylpyridine-2-carbohydrazide

Crystal data	
C ₁₁ H ₁₅ N ₃ O ₃	F(000) = 504
$M_r = 237.26$	$D_{\rm x} = 1.274 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = $407-407.5$ K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.377 (5) Å	Cell parameters from 2827 reflections
b = 4.745 (2) Å	$\theta = 2.7 - 27.5^{\circ}$
c = 23.244 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 99.534 (5)^{\circ}$	T = 293 K
$V = 1237.3 (9) \text{ Å}^3$	Prism, colourless
Z = 4	$1.00\times0.45\times0.10~mm$

Data collection

Bruker P4 diffractometer	2297 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Detector resolution: 0 pixels mm ⁻¹	$h = -14 \rightarrow 11$
ω scans	$k = -6 \rightarrow 6$
9032 measured reflections	$l = -24 \rightarrow 30$
2803 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 0.96	$w = 1/[\sigma^2(F_o^2) + (0.080P)^2 + 0.3962P]$ where $P = (F_o^2 + 2F_c^2)/3$
2803 reflections	$(\Delta/\sigma)_{max} < 0.001$

154 parameters	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.16780 (13)	0.4979 (3)	0.41169 (7)	0.0451 (4)
C2	0.18448 (13)	0.3174 (3)	0.45907 (7)	0.0476 (4)
H2	0.1211	0.2618	0.4771	0.057*
C3	0.29993 (13)	0.2221 (4)	0.47874 (6)	0.0467 (4)
C4	0.39038 (13)	0.3146 (4)	0.45039 (7)	0.0552 (4)
H4	0.4682	0.2531	0.4622	0.066*
C5	0.36375 (14)	0.4981 (4)	0.40462 (8)	0.0608 (5)
Н5	0.4260	0.5619	0.3867	0.073*
C6	0.04284 (13)	0.5972 (4)	0.38881 (7)	0.0493 (4)
C7	-0.15075 (13)	0.6370 (3)	0.27838 (7)	0.0446 (4)
C8	-0.26718 (18)	0.7610 (4)	0.24930 (10)	0.0732 (6)
H8A	-0.2938	0.8948	0.2760	0.088*
H8B	-0.2530	0.8654	0.2152	0.088*
C9	-0.36264 (19)	0.5625 (6)	0.23120 (15)	0.1004 (9)
H9D	-0.4327	0.6624	0.2134	0.151*
H9A	-0.3795	0.4607	0.2646	0.151*
H9B	-0.3391	0.4325	0.2036	0.151*
C10	0.24191 (15)	-0.0530 (4)	0.55627 (8)	0.0557 (4)
H10A	0.1822	-0.1624	0.5311	0.067*
H10B	0.2029	0.1047	0.5718	0.067*
C11	0.30482 (18)	-0.2325 (5)	0.60472 (9)	0.0708 (6)
H11A	0.2481	-0.3041	0.6274	0.106*
H11B	0.3636	-0.1216	0.6292	0.106*
H11C	0.3431	-0.3871	0.5886	0.106*
N1	0.25346 (11)	0.5917 (3)	0.38402 (6)	0.0540 (4)
N2	0.03317 (11)	0.7407 (3)	0.33833 (6)	0.0506 (3)
H2A	0.0960	0.7822	0.3240	0.061*
N3	-0.07761 (11)	0.8213 (3)	0.30948 (6)	0.0490 (3)
H3A	-0.0999	0.9937	0.3116	0.059*
01	-0.04003 (11)	0.5488 (4)	0.41406 (6)	0.0787 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O2	-0.12542 (11)	0.3873 (2)	0.27472 (6)	0.0604 (4)
O3	0.33191 (10)	0.0459 (3)	0.52425 (5)	0.0598 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0370 (7)	0.0495 (8)	0.0482 (8)	0.0069 (6)	0.0051 (6)	-0.0025 (6)
C2	0.0360 (7)	0.0558 (9)	0.0511 (8)	0.0084 (6)	0.0075 (6)	0.0029 (7)
C3	0.0396 (7)	0.0533 (9)	0.0463 (8)	0.0093 (6)	0.0044 (6)	0.0002 (7)
C4	0.0325 (7)	0.0737 (11)	0.0576 (9)	0.0083 (7)	0.0025 (6)	0.0038 (8)
C5	0.0358 (8)	0.0857 (13)	0.0609 (10)	0.0011 (8)	0.0083 (7)	0.0104 (9)
C6	0.0391 (8)	0.0530 (9)	0.0554 (9)	0.0111 (7)	0.0062 (6)	0.0044 (7)
C7	0.0503 (8)	0.0319 (7)	0.0501 (8)	0.0043 (6)	0.0037 (6)	0.0105 (6)
C8	0.0658 (11)	0.0457 (9)	0.0953 (15)	0.0063 (8)	-0.0247 (10)	0.0110 (9)
C9	0.0567 (12)	0.0702 (14)	0.162 (3)	0.0015 (10)	-0.0182 (14)	0.0214 (15)
C10	0.0455 (8)	0.0638 (10)	0.0591 (10)	0.0094 (7)	0.0124 (7)	0.0056 (8)
C11	0.0607 (11)	0.0857 (14)	0.0659 (11)	0.0081 (10)	0.0104 (9)	0.0210 (10)
N1	0.0393 (7)	0.0669 (9)	0.0549 (8)	0.0039 (6)	0.0054 (6)	0.0076 (7)
N2	0.0378 (6)	0.0494 (7)	0.0627 (8)	0.0066 (5)	0.0027 (6)	0.0113 (6)
N3	0.0445 (7)	0.0314 (6)	0.0666 (8)	0.0084 (5)	-0.0034 (6)	0.0054 (6)
01	0.0440 (7)	0.1159 (12)	0.0797 (9)	0.0281 (7)	0.0204 (6)	0.0354 (8)
02	0.0739 (8)	0.0305 (6)	0.0743 (8)	0.0092 (5)	0.0053 (6)	0.0045 (5)
03	0.0407 (6)	0.0781 (8)	0.0612 (7)	0.0186 (5)	0.0099 (5)	0.0205 (6)

Geometric parameters (Å, °)

C1—N1	1.330 (2)	C8—C9	1.446 (3)
C1—C2	1.383 (2)	C8—H8A	0.9700
C1—C6	1.508 (2)	C8—H8B	0.9700
C2—C3	1.393 (2)	С9—Н9D	0.9600
С2—Н2	0.9300	С9—Н9А	0.9600
C3—O3	1.3502 (19)	С9—Н9В	0.9600
C3—C4	1.382 (2)	C10—O3	1.440 (2)
C4—C5	1.369 (3)	C10—C11	1.496 (3)
C4—H4	0.9300	C10—H10A	0.9700
C5—N1	1.342 (2)	C10—H10B	0.9700
С5—Н5	0.9300	C11—H11A	0.9600
C6—O1	1.212 (2)	C11—H11B	0.9600
C6—N2	1.345 (2)	C11—H11C	0.9600
С7—О2	1.2256 (19)	N2—N3	1.3800 (17)
C7—N3	1.335 (2)	N2—H2A	0.8600
С7—С8	1.504 (2)	N3—H3A	0.8600
N1—C1—C2	125.26 (14)	C8—C9—H9D	109.5
N1—C1—C6	116.63 (14)	С8—С9—Н9А	109.5
C2—C1—C6	118.10 (14)	Н9D—С9—Н9А	109.5
C1—C2—C3	117.38 (14)	С8—С9—Н9В	109.5
С1—С2—Н2	121.3	H9D—C9—H9B	109.5
С3—С2—Н2	121.3	Н9А—С9—Н9В	109.5

O3—C3—C4	116.42 (13)	O3—C10—C11	106.39 (14)
O3—C3—C2	125.11 (14)	O3—C10—H10A	110.5
C4—C3—C2	118.46 (15)	C11—C10—H10A	110.5
C5—C4—C3	119.08 (14)	O3—C10—H10B	110.5
C5—C4—H4	120.5	C11—C10—H10B	110.5
C3—C4—H4	120.5	H10A—C10—H10B	108.6
N1-C5-C4	124.12 (16)	C10—C11—H11A	109.5
N1—C5—H5	117.9	C10—C11—H11B	109.5
С4—С5—Н5	117.9	H11A—C11—H11B	109.5
O1-C6-N2	124.08 (14)	C10—C11—H11C	109.5
O1—C6—C1	122.24 (15)	H11A—C11—H11C	109.5
N2-C6-C1	113.69 (14)	H11B—C11—H11C	109.5
O2—C7—N3	122.59 (14)	C1—N1—C5	115.67 (15)
O2—C7—C8	123.14 (15)	C6—N2—N3	120.02 (13)
N3—C7—C8	114.25 (13)	C6—N2—H2A	120.0
С9—С8—С7	116.04 (16)	N3—N2—H2A	120.0
С9—С8—Н8А	108.3	C7—N3—N2	121.25 (12)
С7—С8—Н8А	108.3	C7—N3—H3A	119.4
С9—С8—Н8В	108.3	N2—N3—H3A	119.4
С7—С8—Н8В	108.3	C3—O3—C10	118.97 (12)
H8A—C8—H8B	107.4		
N1—C1—C2—C3	-1.2 (3)	N3—C7—C8—C9	-161.1 (2)
C6—C1—C2—C3	178.43 (14)	C2-C1-N1-C5	0.4 (3)
C1—C2—C3—O3	179.96 (15)	C6—C1—N1—C5	-179.20 (15)
C1—C2—C3—C4	0.6 (2)	C4—C5—N1—C1	1.0 (3)
O3—C3—C4—C5	-178.73 (17)	O1—C6—N2—N3	-5.8 (3)
C2—C3—C4—C5	0.7 (3)	C1—C6—N2—N3	173.92 (13)
C3—C4—C5—N1	-1.6 (3)	O2—C7—N3—N2	1.7 (2)
N1-C1-C6-01	-172.29 (17)	C8—C7—N3—N2	-179.35 (16)
C2-C1-C6-01	8.0 (3)	C6—N2—N3—C7	-77.1 (2)
N1-C1-C6-N2	8.0 (2)	C4—C3—O3—C10	178.74 (16)
C2-C1-C6-N2	-171.66 (14)	C2—C3—O3—C10	-0.7 (3)
O2—C7—C8—C9	17.9 (3)	C11—C10—O3—C3	-177.84 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A···O2 ⁱ	0.86	2.43	3.067 (2)	132.
N3—H3A····O2 ⁱⁱ	0.86	2.06	2.831 (2)	150.
$C_{-m} = 1/2$ (i) $1/2 = 1/2$ (ii)				

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) x, y+1, z.

Fig. 2